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During the period January-December 2006, the theoretical and modelling research activity of the “Mathematical Modelling for Fusion Plasmas Group” of the National Institute for Laser, Plasma and Radiation Physics (NILPRP), Magurele - Bucharest, Romania has been focalized on:

· Plasma models for feedback control of helical perturbations (Resistive wall modes),  activity performed in collaboration with the Max-Planck - Institut für Plasmaphysik (IPP), Tokamakphysics Department, Garching, Germany, and represents a continuation of our activity from 2005;

· Current and pressure profiles reconstruction on JET in eddy current environment, work has been made in close cooperation with Dr. L.E. Zakharov from PPPL and Dr. S. Gherasimov from JET during the secondment at JET during 12.03.06 – 8.04.06 (Campaigns C15-C17).

1. Resistive wall modes
It is known that the maximum achievable β in "advanced tokamaks" is limited by the pressure gradient driven ideal external-kink modes (10-6s). When a tokamak plasma is surrounded by a close fitting resistive wall, the relatively fast growing ideal external kink modes (EKM) is converted into the far more slowly growing "resistive wall mode" (RWM) which grows on the characteristic τw= L/R time of the wall and has virtually identical stability boundaries to those of the EKM in the complete absence of a wall.

Note that the stabilization of RWM in ITER, where it is probably not possible to maintain a very fast plasma rotation is still an open problem.

The objective of our common research was the Development of plasma models for feedback control of helical perturbations. To accomplish this objective, we have considered as necessary the investigation of two models of the RWM investigation:
 - a semi-analytical model consisting of the cylindrical tokamak approximation model but with arbitrary poloidal and “toroidal” disposals, i.e. without symmetries, of wall, feedback and detector systems. In this model the dissipation of plasma rotation via anomalous viscosity can be taken into account;

 - a 2D numerical model consisting of a real axisymmetrical tokamak model with arbitrary cross-section and plasma parameters, and with 3D poloidal and toroidal disposals of wall (in its thin wall approximation), feedback and detector systems.

1.1 The semi-analytical model

In the first part of the year, we have continued the development of our analytical model in cylindrical coordinates that takes into account the poloidal and toroidal plasma rotation and the dissipation in the plasma via an anomal viscosity [1, 2]. The feedback system for stabilizing the RWM consists in a passive and an active one. Under the assumption of a thin resistive shell, a resistive inhomogeneous wall with gaps represents the passive system taken into account. The active system consist of a number of rectangular, radially thin coils and detectors centred at the same local coordinates system, the magnetic flux measured by the detector being amplified and fed back into the coils.  

We have found that rotation of a thin inertial layer (governed by non-ideal magnetohydrodynamics) at the surface of the plasma stabilizes the RWM by means of dissipation via viscosity [3] and by decoupling the RWM from the eddy-currents induced in the passive shell, and have estimated the minimum level of the rotation necessary to stabilise these modes. 

The following milestones have been achieved and reported in Ref. [3]:

· elaboration of an improved analytical model that describes the behavior of the resistive wall modes, by identifying and elimination of the spurious roots of the dispersion relation;
· elaboration of a numerical code with a “friendly” interface;
· determination of the effect of the proper feedback disposal on growth rate of the resistive wall modes as function of the normalized plasma beta;
· study of the passive wall influence on stability of the resistive wall modes and explaining of the initially destabilizing effect of edge plasma rotation as the passive wall approaches the plasma;
· investigation of the unlocking effect on the resistive wall mode from the passive wall surrounding the plasma due to the strong plasma edge rotation as the mode starts to stabilize;
· derivation of a new and improved dispersion equation concerning the growth rate and real rotation frequency of the resistive wall modes;
· determination of the influence of the edge plasma rotation in achieving of a higher normalized beta for a stabilized tokamak plasma.
 By using a new dispersion equation obtained for the RWM:
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we were able to perform a more accurate numerical calculus of the polynomial roots that became, at the same time, less time-consuming. The second order polynomial appearing in the above dispersion relation represents spurious roots, which do not characterise the RWM of the considered plasma. γ0= γ + iω0 represents the variation rate of the RWM and the rotation velocity of the edge plasma, while the parameters enclosed in the equation contains all information plasma and the system of coils and detectors used for the feedback of the RWMs. The summation takes place over the poloidal and toroidal plasma modes taken into account. The complex coefficients 
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m,j=m1(m2 are poloidal indexes, while n,k=n1(n2 are toroidal indexes, a and R0 are the small and the equivalent big radius, qa and q0 are the safety factors at the plasma boundary and at the plasma center respectively, Bza is the toroidal magnetic field, τA, τR, τV, are the edge plasma: Alfvén; resistive, and viscous time scales respectively, the subscripts f,w,d of radius r represent the feedback radius, the wall radius and the detector radius; dw1,2 are the thicknesses of the wall pieces and 
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 are the geometrical parameters of the feedback and detector coils; M and N are the  numbers of feedback coils in poloidal and toroidal directions, respectively; ηw, ηf are the electrical resistivity of the wall (aluminum - Al and stainless steel - SS) and of the feedback coils, respectively;  Gp,d are the proportional and the derivative gains, respectively, Ωφθ are the toroidal and poloidal angular plasma velocities, respectively.

A very important issue to achieve in tokamak plasmas is a higher plasma normalized beta while preserving stabilization for the edge plasma modes. We have shown the growth rate dependence on the stability parameter κ = (βN-β no-wall)/(βN-βideal-wall) (κ =0, correspond to the n-wall plasma case, while κ =1 to the ideal-wall plasma case) with and without feedback and for different locations of the passive shell, feedback and detectors coils. Practically, use has been made of an equivalent parameter:
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, where the critical radius rc defines the radius up to which the shell converts the ideal external kink mode into a non-rotating RWM (rc=1.381m) and m is the poloidal wave number of the considered RWM. Fig. 1 (a) and (b) show the appropriate way for placing the feedback system around the plasma. Placing the feedback coils and detectors between plasma and the passive shell seems to be the best choice for RWM stabilization and, consequently, for obtaining a better stability parameter for plasma. 

Fig. 2 shows the growth rate of the 3/1 RWM calculated as a function of the plasma toroidal rotation for various wall radii in the absence of feedback. A wall that is close to the plasma gives rise to a RWM with a real frequency growth rate (the imaginary part of γ0) closer to zero. We found again that initially the plasma rotation has a destabilizing effect on the RWM and that only when γ0i is greater than the real one γ0r, does the stabilization of the mode start. According to Fig. 2, somewhat counter intuitively, the optimum configuration is to place the passive shell as far away from the plasma as is consistent with the stabilization of the external-kink instability. The descending rate of γ0 is lower for a close-fitting passive shell in the presence of a strong edge plasma rotation. The reason for this fact consists in an easier mode decoupling from the shell in the case of a far-fitting resistive shell. Also, it can be seen an initially destabilizing effect of the edge plasma rotation on the RWM; as long as the shell is able to lock the mode, the angular rotation “feeds” energetically the RWM which grows radially. When a sufficient angular rotation is provided, it unlocks the mode from the shell, the RWM starting to stabilize itself.  

The growth rate dependence on the location of the resistive wall rw, by keeping the positions of both detector and feedback coils, are presented in Fig. 3. The destabilizing effect by approaching the wall radius to the critical Newcomb radius with no rotation has been found.

Figure 4 shows the dependence of the plasma normalized beta (κ = (βN-βno-wall)/(βN-βideal-wall)) as function of the toroidal angular velocity of the plasma edge for different values of the anomalous perpendicular viscosity coefficient in the plasma. It can be seen that the area of the stable region for the resistive wall mode is an increasing function of dissipation by viscosity in the plasma. At the same time, the minimum edge rotation required for the stabilization decreases as the dissipation takes higher values. κ is plotted between the no-wall plasma beta (corresponding to κ = 0) and ideal-wall plasma beta (corresponding to κ = 1).


The dependence of the growth rate of the RWM with edge plasma rotation with feedback for different passive wall resistivities and feedback derivative and proportional amplification factors is plotted in Fig. 5. The two types of passive shell are alternatively disposed and the feedback coils are disposed over the shell of index 2. It can be seen that the best stabilizing choice corresponds to case (1) and the worst to case (3) for the same values of amplification factors. The aluminum passive shell, having a lower resistivity, stabilize better the RWM in the absence of feedback coils, whereas the stainless steel shell stabilize better in the presence of feedback coils, allowing the feedback signal to penetrate easier the shell against the plasma instability.


Fig. 6 shows the dependence of the RWM’s growth rate with the derivative amplification factor for Gp= 0 for different disposals of the aluminum and stainless steel. The best choice is (2), meaning that in the absence of the most important amplification factor (Gp ) the role of the active feedback system is weaker and the Al-Al stabilize better the RWM. As in the previous case, the SS-SS case is the worst choice. 

Fig 7 shows the dependence with the proportional amplification factor when Gd=0; the influence of Gp to the RWM stabilization being higher than the influence of Gd , is can be seen that the most stabilizing choice is the Al-SS wall disposal for the same values for the aluminum and stainless steel resistivity.

1.2 The 2D numerical model

In the second part of 2006, we have considered a real 2D equilibrium model            (with axis symmetrical geometry) for a 3D perturbation of the RWM, have formulated the physical problem, have drawn the equations and made the first runs of the codes we developed on test problems. For the moment, we have not seen a better approach than a “normal mode approach”, i.e. the dynamics of a feedback system satisfies the relation of a vanishing quadratic energy functional. Contrarily to systems without feedback [5], this functional describes           the energy exchange between the plasma, the vacuum regions, the resistive wall, and the external coils. Due to the fact that energy can enter or leave the system through the feedback coils, this functional is in general non self-adjoin (as it was the case for systems without feedback).
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Figure 1. γ(κ) dependence, with κ=(βN-β no-wall)/(βN-βideal-wall), for Gp= 5.5, Gd= 31, Ωφ= -300 rot/s and dw1= dw2= 0.0001m, in two cases: a) (1) without feedback, (2) rf  - rw = 0.1m and rd - rw = 0.05m, (3) rf -rw = 0.1m and rw - rd = 0.05m, (4) rw - rf = rw – rd = 0.05m; b) (1) without feedback, (2) rf - rw = 0.05m and rd - rw = 0.025m, (3) rf  - rw = 0.05m and rw - rd = 0.025m, (4) rw - rf = rw – rd = 0.025m, where, rw , rd, rf   are the radius of the wall, detector coils and feedback coils, respectively.
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	Figure 2. γ(Ωφ) dependence without feedback and for three different wall radii: (1) rw= 1.1m, (2) rw=1.2m and (3) rw=1.3m. The solid lines represent the real part of γ, the growth rate, while the doted lines the imaginary part, the rotation of the mode.
	Figure 3. γ(rw) dependence with rd=const. and rf=const. (vertical solid lines). (1) Gd=31 and Gp=5.5; (2) without feedback.
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	Figure 4. The dependence of the plasma normalized beta as function of the toroidal angular velocity of the plasma edge for different values of the anomalous perpendicular viscosity coefficient in the plasma (μ1= 9x 10-14kg/m/s, μ2= 4.5x 10-13kg/m/s, μ3= 9x 10-13kg/m/s).


	Figure 5. The dependence of the growth rate of the RWM with edge plasma rotation with feedback for different passive wall resistivities and feedback derivative and proportional amplification factors. (1) η1= ηAl , η2= ηSS , Gp=5.5, Gd=31; (2) η1= ηAl , η2= ηAl , Gp=5.5, Gd=31; (3) η1= ηSS , η2= ηSS , Gp=5.5, Gd=31; (4) η1= ηSS , η2= ηAl , Gp=5.5, Gd=31; (5) η1= ηAl , η2= ηSS , Gp=55, Gd=310, where ηAl = 0.465x 10-7 Ωm for aluminum and ηSS = 0.9x 10-6 Ωm for stainless steel.
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	Figure 6. The dependence of the RWM growth rate with the derivative amplification factor for Gp= 0 for different disposals of the aluminum and stainless steel shells ( (1) η1= ηAl , η2= ηSS , (2)    η1= ηAl , η2= ηAl , (3) ) η1= ηSS , η2= ηSS , (4) η1= ηSS , η2= ηAl , (5) η1= ηAl , η2= ηSS x 10.
	Figure 7. The dependence of the RWM growth rate with the proportional amplification factor for Gd= 0 for different disposals of the aluminum and stainless steel shells ( (1) η1= ηAl , η2= ηSS , (2) η1= ηAl , η2= ηAl , (3) ) η1= ηSS , η2= ηSS , (4) η1= ηSS , η2= ηAl , (5) η1= ηAl ,   η2= ηSS x 10.  


For this new case, we have applied our approaches of calculating the vacuum contribution of a flux function perturbation [6, 7] to an external kink mode, and generalised the expression of the potential energy deduced by us for a tearing mode in real tokamak geometry but for the self-adjoint case only [8].

Using the concept of a surface current [7] the relation between the stability and the energy and the torques associated with the perturbation was obtained most naturally. By using inductances, resistances, and torques associated with a surface current, the description and calculation of the stability of the RWM and feedback stabilization (plasma response function) are greatly simplified in a computational study. The surface currents can be used to determine the energy change in the region occupied by the plasma and the surrounding vacuum due to a perturbation and to model plasma, wall and coils.

The following milestones have been achieved:

· description of the vacuum field given the normal component of the perturbed field on the plasma boundary for a 2D axisymmetrical tokamak;

· calculation of the surface current corresponding to a given plasma mode;

· calculation of the patterns of the induced eddy currents in the resistive wall;

Outside of the plasma, the magnetic properties of a magnetohydrodynamic (MHD) perturbation are completely described by giving the normal component of the magnetic perturbation at the location of the surface of the unperturbed plasma: JB•grad a. J is the Jacobian of the (a, θ, ζ) coordinates (the boundary of the plasma is defined by a=const).

In linear theory, the normal component of the magnetic field at the location of the unperturbed plasma surface can be written as a sum over eigenmodes,
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,
 fi(θ, ζ) are the eigenfunctions, and are chosen to diagonalize the operator δW, which gives the energy change in the region occupied by the plasma and surrounding vacuum. The change in the energy due to the perturbation is given by
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If any of the eigenvalues of δW, the wi, are negative, then the plasma is unstable in the absence of a conducting wall. Ψi, which has units of flux, are given by an integral over the unperturbed plasma surface, with fi as weights
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The perturbed magnetic field outside the plasma can be calculated assuming the currents in the plasma region form a surface current K on the plasma boundary. The plasma contribution to the perturbation JB grad a, at the unperturbed plasma boundary, could be produced by a surface current K on that boundary.
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κ(θ, ζ) being the time-dependent stream function of the surface current. Expressing the energy change in the region occupied by the plasma and a surrounding vacuum, due to the perturbation, with the help of the stream function of the surface current, we obtain
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In the first part of this work deals with the determination of the stream function κ(θ,ζ,t), considering that the perturbation is given by an external kink modes. We have developed robust and accurate boundary integral equations method, which can incorporate a large variety of plasma cross-sectional shapes, separatrix configurations included.

The solution for the MHD stability equations can take into account the effect of the perturbed magnetic field as an integral variational problem where the vacuum influence enters as integral relations, identified as contributions to the energy from both plasma surface and vacuum. In the absence of a skin current on the plasma boundary, the surface contribution δWs  vanishes. The volume contribution δWv expressed in terms of the magnetic scalar potential Φ, is given by the relation
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with B=grad Φ.  

A continuous surface distribution of simple sources extending over a surface ∂D (not necessary closed) and of density σ(q), generates the simple-layer potential at p in ∂D. If σ is Hölder continuous at p belonging to ∂D, then the tangential derivatives of Φ exist and are continuous at p, while the normal derivatives of Φ exist and are discontinuous [9].
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Our objective was to find a surface current that gives the perturbed magnetic field Bn on the plasma boundary. With this boundary integral method the stream function κ has been calculated for different plasma cross-sections. The normal component of the perturbed magnetic field has been considered as excited by a flux function perturbation Ψ of unit amplitude and resulting from an m/n=3/2 external kink mode. The surface distribution of the stream function κ has been represented in the plane ζ=0 for a circular plasma (Fig. 8), and for the diverted plasma shape as resulting from shot no. 5000 at 1.55 s of the ASDEX Upgrade tokamak (Fig. 9).


Being now able to determine the normal to a wall component of the magnetic field excited by an external kink mode, we can proceed to the calculation of the wall response to that excitation. A representation of the wall, as a continuous construction is given in Fig. 10, while a wall made from different pieces is represented in Fig. 11. Both are considered in the thin wall approximation, i.e., the skin time of the wall must be sufficiently small compared with the characteristic time of the external field variation. 
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	Figure 8. Distribution of the stream function κ(l) along the contour of a circular cross-section plasma (a/R=0.4, m/n=3/2)
	Figure 9. Distribution of the stream function κ(l) along the contour of the single-null ASDEX Upgrade plasma (shot no. 5000 at 1.55 s)


 
The thickness of the conductor is neglected and the current is assumed to flow in the infinitesimally thin conductor (on the conductor surface). The current divergence being equal to zero, the linear current density can be described by a current stream function V (current potential) that is a function of time and position, and is given by the relation 
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or in orthogonal curvilinear coordinates (u, v),


[image: image24.wmf]1

u

v

V

j

hv

¶

=

¶

,  
[image: image25.wmf]1

v

u

V

j

hu

¶

=-

¶


with hu and hv the Lamé metric coefficients. Starting from Maxwell equations, we have obtained the parabolic diffusion equation relating the current potential time evolution to the time variation of the exciting normal magnetic field
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For the beginning, test problems have been solved: first a rectangular wall, without holes has been considered. In Fig.12, the current potential distribution for a uniform in space exciting field is given.


For the same spatial dependence of the exciting field, the isolines for a rectangular wall with holes are given in Fig. 13 and Fig. 14.

Considering now a spatial structure of the exciting magnetic field of the form
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	Figure 10. Continuous toroidal wall, surrounding a single-null ASDEX Upgrade plasma 
	Figure 11. Four pieces of a toroidal wall, surrounding a single-null ASDEX Upgrade plasma
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	Figure 12. Isolines of the current potential, i.e. eddy current trajectories, for a rectangular thin stain-less steel wall under the excitation of a spatially uniform magnetic field of the form B=B0•t


	[image: image31.emf]
	[image: image32.emf]

	Figure 13. Isolines of the current potential, i.e. eddy current trajectories, for a rectangular thin stain-less steel wall with four non-symmetric holes, under the excitation of a spatially uniform magnetic field of the form B=B0•t
	Figure 14. Isolines of the current potential, i.e. eddy current trajectories, for a rectangular thin stain-less steel wall with four symmetrical equal holes, under the excitation of a spatially uniform magnetic field of the form B=B0•t


simulating the spatial dependence of the perturbed magnetic field due to an external kink mode m/n=3/2, the lines of constant linear current density jx and the current potential isolines, for a rectangular wall without holes, are presented in Fig. 15. For the same field structures, the isolines of the current potential, but in the presence of four holes, are given in Fig. 16.

In the following, two more realistic time dependences have been considered:
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For the first one, the isolines of the current potential at different times are given in Fig.17.
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	Figure 15. Lines of constant linear eddy current distribution  jy and isolines of the current potential, for a rectangular thin stain-less steel wall without holes, under the excitation of a spatially varying magnetic field (m/n=3/2)
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	Figure 16. Isolines of the current potential, for a rectangular thin stain-less steel wall with for holes, under the excitation of a spatially varying magnetic field (m/n=3/2)
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	Figure 17. Isolines of the current potential, for a rectangular thin stain-less steel wall without holes, under the excitation of a spatially constant magnetic field and quadratic time dependence


This work has been carried out in close collaboration with our German colleagues from the Tokamak Physics Department of the Max-Planck-Institut für Plasmaphysik, during the mobility 01.06.06-29.08.06 at IPP Garching and at our home institute NILPRP.
Next steps:

· to introduce, like in our semi-analytical model, feedback coils and detector sensors;

· to consider a toroidal wall with gaps and holes, compatible with the geometry compatible with the ASDEX Upgrade tokamak;

· to continue the investigation of different dissipation mechanisms in the plasma.

2. Equilibrium reconstruction in eddy current environment, by using the discharge time history, magnetic and MSE measurements

Our previous activity consisting in the “Current and Pressure Profiles Reconstruction on JET by using magnetic data and data resulting from the Motional Stark Effect (MSE) measurements as constraints”, by using the Equilibrium and Stability Code (ESC), has been continued with the calibration of JET sensors for equilibrium reconstruction with the target of elimination of uncertainties in magnetic signals due to the presence of the iron core and due to eddy currents in passive conductors has been considered. 

       In finding the current density and pressure profiles in the r.h.s. of the axisymmetrical Grad-Shafranov equation (i.e. toroidal wave number n=0), we have take into account that the eddy currents and the iron core generate the n≠0 components. Therefore, the time history of the measurements was necessary.

       With this in view, a correlation matrix between sensors located outside and inside the vacuum vessel has been introduced in order to determine the parasitic n ( 0 perturbation in magnetic fields generated by the iron core. Another time dependent matrix of response functions has been introduced in order to eliminate the n ( 0 perturbation generated by the eddy currents. Both elements can be determined using calibration shots (without plasma) only, they allow to pre-process magnetic signals of plasma discharges for further use in the equilibrium reconstruction codes. In this view, on our request, “dry runs” (no. 656898, for example) have been performed at JET.
       The following objectives have been accomplished:   

· determination of the transfer function s(t);

·  elimination of contribution of eddy currents generated by the PF coils into signals;

·  elimination of contribution of eddy currents generated by the plasma;  

· a first model to consider the iron influence, by using surface currents, has been developed, by considering our previous contributions in this field [10, 11] in order to obtain a better fit of the magnetic data. 
· a first analytical step to consider the influence of the separatrix, with our special treatment of the X point  [8] has been accomplished.
       This work has been made in close cooperation with Dr. S. Gerasimov from JET and Dr. L.E. Zakharov from PPPL.

A supplementary work has been performed:

· we completed the methodology for the "Design of a Helmholtz pair coils" (to be used at JET to calibrate magnetic probes), with magnetic flux calculations at different magnetic probes. Note that the experimental device of the Helmholtz pair coils has been constructed in agreement with the design date furnished by our calculations and the first measurements and calibrations have been already performed at JET.

Next steps:

· to finalize of the extraction of the parasitic influence of the eddy currents and the iron core on the magnetic measurements; 
· to perform runs of the ESC code with data obtained from JET and comparison of the reconstructed profiles with those given by the EFIT code, with special attention given to the hollow profiles and to the influence of the separatrix;

· determination of the response functions by eliminating the n ( 0 iron core contribution; 
· introducing of a correlation matrix between sensors located outside and inside the vacuum vessel in order to determine the parasitic n ( 0 perturbation in magnetic fields generated by the iron core.
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3. Collaborative actions

Project: INTERPRETATION AND CONTROL OF HELICAL PERTURBATIONS IN TOKAMAKS

Partner: Tokamakphysics Department of the Max-Planck-Institut für Plasmaphysics (IPP), Garching, Germany

Objective: Plasma models for feedback control of helical perturbations

Milestones:   the following milestones have been accomplished:

· description of the vacuum field given the normal component of the perturbed field on the plasma boundary for a 2D axisymmetrical tokamak geometry (equations and algorithm);

· description of the fields across thin layers and for 2D axisymmetrical tokamak geometry.

       The objective of this common research was to advance the physics understanding of RWMs stability by considering a real 2D tokamak geometry with an 3D perturbation given by an external kink mode. The obtained results have been presented in detail in the sub-task 1.2 The 2D numerical model of the present report.
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